Test the time series for a set of conditions without generating an html report. This can be useful for incorporation into a pipeline.
Arguments
- df
A data frame containing multiple time series in long format. See Details.
- inputspec
inputspec()
object specifying which columns in the supplieddf
represent the "timepoint", "item", and "value" for the time series.- alert_rules
alert_rules()
object specifying conditions to test- filter_results
Only return rows where the alert result is in this vector of values. Alert results can be "PASS", "FAIL", or "NA".
- timepoint_limits
Set start and end dates for time period to include. Defaults to min/max of
timepoint_col
. Can be either Date values or NAs.- fill_with_zero
Logical. Replace any missing or NA values with 0? Useful when value_col is a record count.
Details
The supplied data frame should contain multiple time series in long format, i.e.:
one "timepoint" (date/posixt) column which will be used for the x-axes. Values should follow a regular pattern, e.g. daily or monthly, but do not have to be consecutive.
one or more "item" (character) columns containing categorical values identifying distinct time series.
one "value" (numeric) column containing the time series values which will be used for the y-axes.
The inputspec
parameter maps the data frame columns to the above.
Examples
alert_results <- mantis_alerts(
example_prescription_numbers,
inputspec = inputspec(
timepoint_col = "PrescriptionDate",
item_cols = c("Antibiotic", "Location"),
value_col = "NumberOfPrescriptions"
),
alert_rules = alert_rules(
alert_missing(extent_type = "any", extent_value = 1),
alert_equals(extent_type = "all", rule_value = 0)
)
)